Fd2td Analysis of Electromagnetic Field Propagation in Multipole Debye Media with and without Convolution

نویسندگان

  • M. Feliziani
  • S. Cruciani
  • V. De Santis
  • F. Maradei
چکیده

This paper deals with the time-domain numerical calculation of electromagnetic (EM) fields in linearly dispersive media described by multipole Debye model. The frequency-dependent finite-difference time-domain (FD2TD) method is applied to solve Debye equations using convolution integrals or by direct integration. Original formulations of FD2TD methods are proposed using different approaches. In the first approach based on the solution of convolution equations, the exponential analytical behavior of the convolution integrand permits an efficient recursive FD2TD solution. In the second approach, derived by circuit theory, the transient equations are directly solved in time domain by the FD2TD method. A comparative analysis of several FD2TD methods in terms of stability, dispersion, computational time and memory is carried out.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Guideline for the Allocation of Multipoles in the Multiple Multipole Method for Two Dimensional Scattering from Dielectrics

A new guideline for proper allocation of multipoles in the multiple multipole method (MMP) is proposed. In an ‘a posteriori’ approach, subspace fitting (SSF) is used to find the best location of multipole expansions for the two dimensional dielectric scattering problem. It is shown that the best location of multipole expansions (regarding their global approximating power) coincides with the med...

متن کامل

Finite-difference computation of transient electromagnetic waves for cylindrical geometries in complex media

We present two novel, fully three-dimensional (3-D) finite-difference time-domain (FDTD) schemes in cylindrical coordinates for transient simulation of electromagnetic wave propagation in complex (inhomogeneous, dispersive, and conductive) and unbounded media. The proposed FDTD schemes incorporate an extension of the perfectly matched layer (PML) absorbing boundary condition (ABC) to three-dime...

متن کامل

DEVELOPMENT OF AN FDTD TOOL FOR MODELING OF DISPERSIVE MEDIA Part I. Material parameters and updating equations for fields

The implementation of the Debye, narrowband Lorentzian, and wideband Lorentzian dielectric and magnetic media in the numerical tool EZ-FDTD developed at the University of Missouri-Rolla (UMR is described. This tool allows efficient and robust full-wave finite-difference time-domain modeling of different complex electromagnetic structures. Algorithms for dispersive media use the linear recursive...

متن کامل

On Inhomogeneous Metamaterials Media: A New Alternative Method for Analysis of Electromagnetic Fields Propagation

The analysis of waves propagation in homogeneous anisotropic media constitutes a classical topic in every field of science and has been preferentially discussed using locally plane waves. Specific physical quantities and their behaviour laws are really what make the difference. Although the use of Fourier transform enables an approach formally analogous to that of plane waves in linear evolutio...

متن کامل

A Discrete Singular Convolution Method for the Seepage Analysis in Porous Media with Irregular Geometry

A novel discrete singular convolution (DSC)  formulation  is  presented for the seepage analysis in irregular geometric porous media. The DSC is a new promising numerical approach which has been recently applied to solve several engineering problems. For a medium with regular geometry, realizing of the DSC for the seepage analysis is straight forward. But DSC implementation for a medium with ir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012